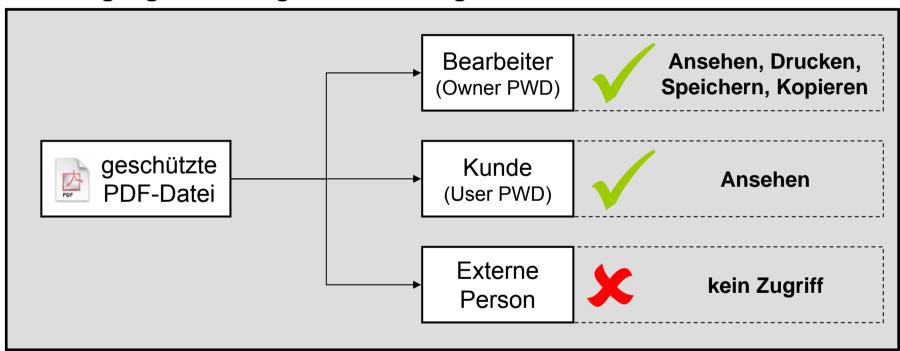

Sicherheit von PDF-Dateien

Berechtigungen/Nutzungsbeschränkungen zum


- Drucken
- Kopieren und Ändern von Inhalt bzw. des Dokumentes
- Auswählen von Text/Grafik
- Hinzufügen/Ändern von Anmerkungen und Formularfeldern

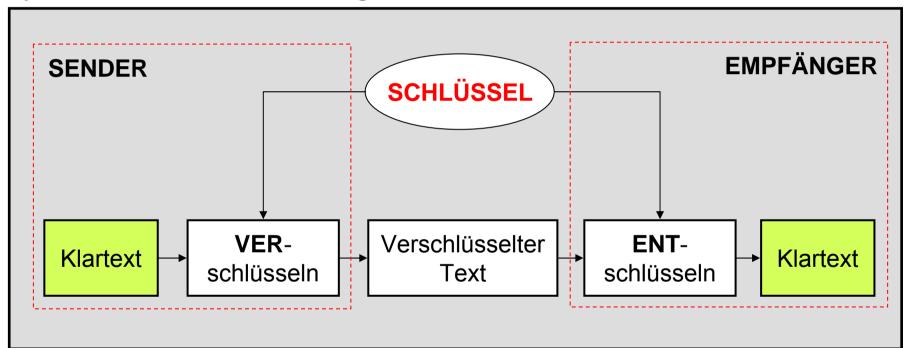
Berechtigungen/Nutzungsbeschränkungen

VERSCHLÜSSELUNGSMETHODEN/ALGORITHMEN

Schlüssel/Key

- Passwörter in Acrobat max. 32 Zeichen
- Key wird über Hash-Funktion erstellt
 - ⇒ lautet bei Acrobat: *Encryption Key*
- Länge in Bit
 - ⇒ 128 Bit = $2^{128} \approx 3.4 \times 10^{38}$ (ab Acrobat 5.0, vorher: 40 Bit)
 - **⇒ 34028236692093846346337460743176821100**

VERSCHLÜSSELUNGSMETHODEN/ALGORITHMEN


Schlüssel/Key

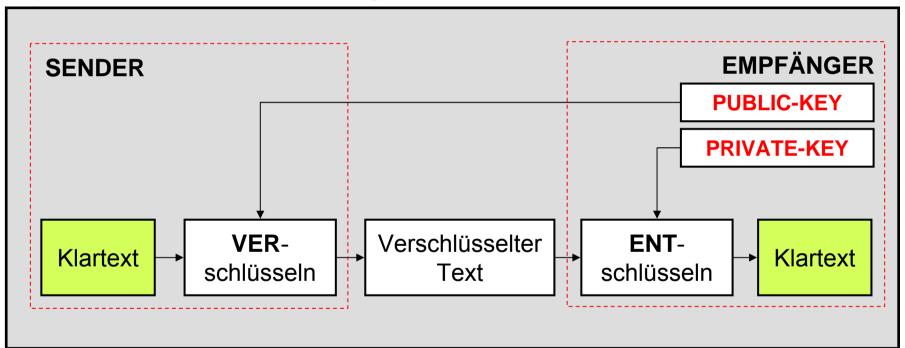
- Faustregel:
 - ⇒ Verlängerung Schlüssel um 1 Bit
 - ⇒ Verdoppelung der Resistenz gegen Angriffe mittels Ausprobieren

VERSCHLÜSSELUNGSMETHODEN/ALGORITHMEN

Symmetrische Verschlüsselung

VERSCHLÜSSELUNGSMETHODEN/ALGORITHMEN

Symmetrische Verschlüsselung


- Erzeugen von zwei etwa gleich langer Primzahlen p und q
- Multiplizieren von p und q, man erhält das Produkt N
- Anwenden der Euler-Funktion $\varphi(N)$ (= $(p-1) \cdot (q-1)$) auf N
- Berechnen von e und d (teilerfremd zu $\varphi(N)$)
- e und N werden zum Verschlüsseln benutzt
- **d** und $\varphi(N)$ werden zum Entschlüsseln benutzt
- Eine "Rückrechnung" kann nicht über die gleiche Variable stattfinden (liegt an der benutzten Mathematik)

SCHLÜSSEL	p und q	×	φ(N)	е	d	
-----------	-----------------------	----------	------	---	---	--

VERSCHLÜSSELUNGSMETHODEN/ALGORITHMEN

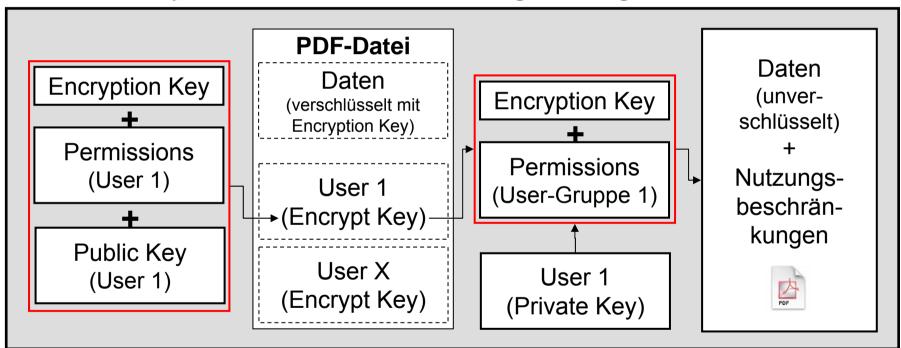
Asymmetrische Verschlüsselung

VERSCHLÜSSELUNGSMETHODEN/ALGORITHMEN

Symmetrische Verschlüsselung

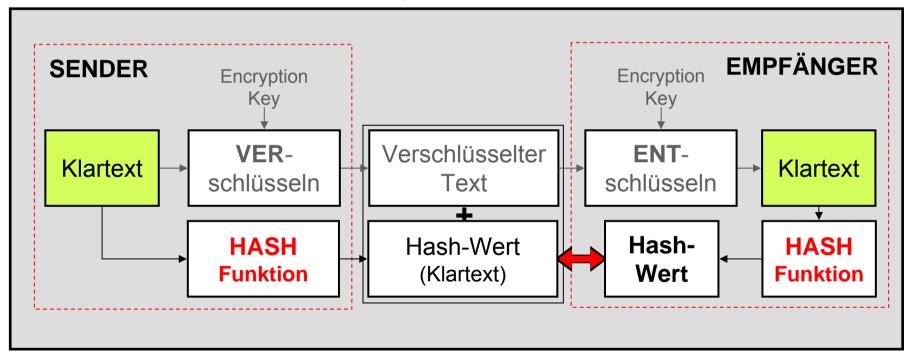
SCHLÜSSEL	p und q	N	φ(N)	е	d	
-----------	-----------------------	---	------	---	---	--

Asymmetrische Verschlüsselung

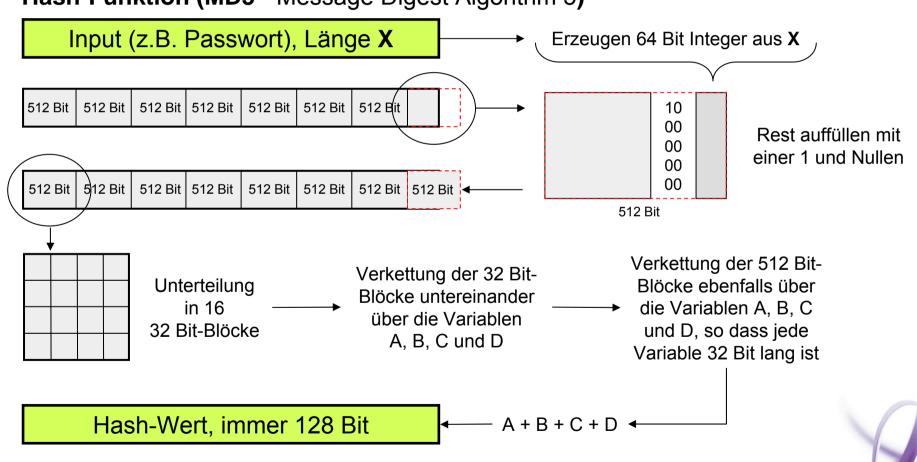

PUBLIC KEY	p und q	N	е
------------	-----------------------	---	---

	PRIVATE KEY	p und q	(N)	φ(N)	d
--	-------------	-----------------------	-----	------	---

VERSCHLÜSSELUNGSMETHODEN/ALGORITHMEN


Einsatz von asymmetrischer Verschlüsselung: Self-Sign Sicherheit

VERSCHLÜSSELUNGSMETHODEN/ALGORITHMEN


Die Hash-Funktion als Überprüfungsmechanismus

VERSCHLÜSSELUNGSMETHODEN/ALGORITHMEN

Hash-Funktion (MD5 - Message Digest Algorithm 5)

VERSCHLÜSSELUNGSMETHODEN/ALGORITHMEN

Erzeugung Hash-Wert

Die Erzeugung eines Hash-Wertes zeigt folgendes Beispiel:

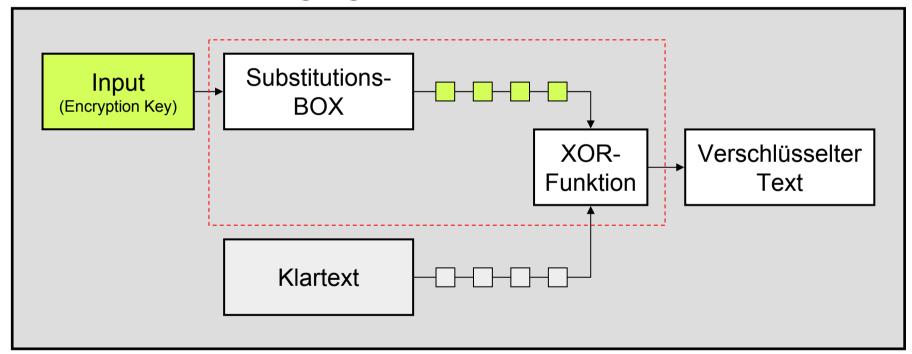
Eingabe von: **PDFst@r2005!** erzeugt den

⇒ Hash-Wert: *8d4d753354e3d51aa43a2af82b2e6283*

Eingabe von: **PDFstar2005!** erzeugt den

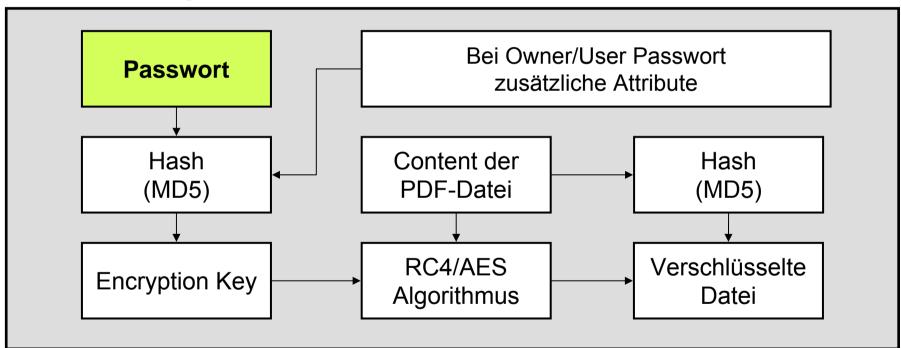
⇒ Hash-Wert: 541c44a16895c4be2fb43073533df57f

VERSCHLÜSSELUNGSMETHODEN/ALGORITHMEN

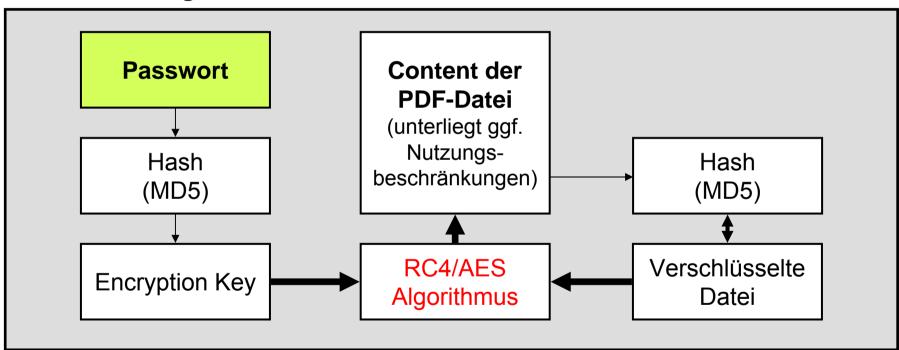

Wird eine PDF-Datei komplett verschlüsselt?

- nur der Inhalt von Strings (Text) und Streams (z.B. JPEG-Datenstrom),
 nicht aber die Objektverwaltung
 - ⇒ schnellen Zugriff auf Teile einer Datei, ohne erst die gesamte Datei entschlüsseln zu müssen
 - ⇒ Dokumenteninformationen/Lesezeichen werden kodiert
 - ⇒ Objekt- und Generationsnummer, sowie Berechtigungen gehen in eine Verschlüsselung mit ein

VERSCHLÜSSELUNGSMETHODEN/ALGORITHMEN


RC4/AES Verschlüsselungsalgorithmus

STANDARD SECURITY HANDLER

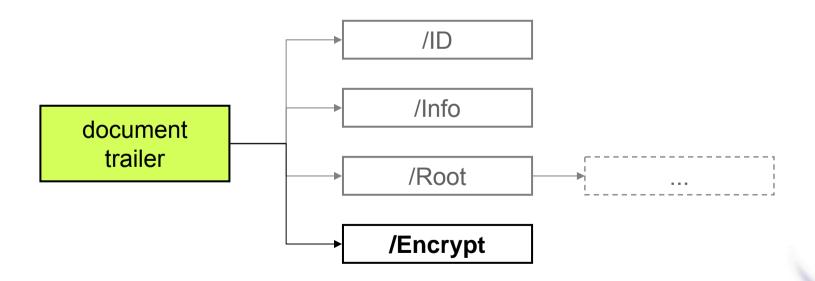

Verschlüsselung

STANDARD SECURITY HANDLER

Entschlüsselung

SECURITY HANDLER

Security Handler


- 1. Entgegennahme/Abfrage eines Passwortes (User/Owner)
- 2. Umrechnen des Passwortes (Aufruf Hash-Funktion) in Encryption Key
- 3. RC4-/AES-Vorgang starten
- 4. Hash-Wert von Content erzeugen/mit gespeichertem Wert vergleichen

EINBETTUNG DER VERSCHLÜSSELUNG

Encryption

- /Encrypt steht im document trailer
 - ⇒ dazu gehört das Encryption Dictionary
 - ⇒ kein *Encrypt*, keine Verschlüsselung

EINBETTUNG DER VERSCHLÜSSELUNG

Standard Security Encryption Dictionary

- Filter/SubFilter: geben an, welcher Ver-/Entschlüsselungsmechanismus (Security Handler) benutzt wird
 ⇒ ab PDF 1.3 zur Unterstützung Public-Key-Infrastruktur (PKI)
- **V** (Version): 0 bis 4, gibt an, auf welche Weise RC4 für die Verschlüsselung verwendet wird (Standard ist 3: 40-128 Bit)
- Length: Länge des Schlüssels (in Bit) als Vielfaches von 8, Default: 128
- **P** (Permissions): Nutzungsbeschränkungen (32-stellige Binärzahl, jede Stelle hat bestimmte Bedeutung, wird als Dezimalzahl ausgegeben)
- O und U: Hash-Wert von Owner- und User-Passwort
- *EncryptMetadata* (true/false): Metadata-Informationen sind kodiert Default: true, nur bei V<4

EINBETTUNG DER VERSCHLÜSSELUNG

Beispiel

trailer	% Trailer dictionary
<<	
/Size 95	% Anzahl der Objekte in der Datei
/Root 93 0 R	% Der Dokumentenbaum hat die object ID 93
/Encrypt 94 0 R	% Das Encryption Dictionary hat die object ID 94
>>	
94 0 obj	% Encryption dictionary
<<	
/Filter /Standard	% Standard Security Handler wird benutzt
/R 3	% Revision 3 des Security Handlers
/V 4	% Anwendung des RC4-Algorithmus (Variante 4)
/Length 128	% Länge des Encryption Key, hier 128 Bit
/O (xxxxxx)	% Hashed Owner Password (32 byte)
/U (xxxxxx)	% Hashed User Password (32 byte)
/P 65472	% Permissions als Dezimalzahl
>> endobj	

ADVANCED PDF PASSWORD RECOVERY (APDFPR)

Funktion

- PDF-Dateien entschlüsseln, die mit User/Owner-Passwort geschützt sind
- Angriffsziel: Encryption Key
 - ⇒ Brute-Force (Werte generieren, hashen und vergleichen)
 - ⇒ Dictionary Attack (Einträge aus Wörterbüchern werden durchprobiert)

Anwendungsgebiet/ Beschränkungen

- APDFPR kann nur die Standardsicherheit von Acrobat verarbeiten.
- 40 Bit-Verschlüsselung lässt sich knacken, 128 Bit-Verschlüsselung nicht
- Einige Dateien, die mit Acrobat 6.0 erstellt worden sind können nicht verarbeitet werden (ab PDF 1.5)

QUALITÄT DER ACROBAT-VERSCHLÜSSELUNG

- abhängig von der Qualität des Passwortes und
- Länge des Schlüssels (ab Acrobat 5.0: 128 Bit Standard, vorher: 40 Bit)
 - ⇒ Probleme bei Abwärtskompatibilität
 - ⇒ Angriffsziel für APDFPR
- Einhaltung der Nutzungsbeschränkungen
 - ⇒ lediglich der PDF-Viewer soll Funktionen deaktivieren
- Schutz vor erneutem Distillieren

ACROBAT IST SICHER, wenn...

- ...Passwort "sicher" gewählt und geheim gehalten wird
- ...die Verschlüsselung mit 128 Bit erfolgt
- große Unternehmen: Public-Key-Infrastruktur
 - ⇒ LifeCycle Document Security